V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX  ›  min  ›  全部回复第 6 页 / 共 119 页
回复总数  2376
1 ... 2  3  4  5  6  7  8  9  10  11 ... 119  
178 天前
回复了 NoCash 创建的主题 投资 2024 年中旬,持币 20 万,能干什么?
大 a 有点风险啊,可能还会跌,这个月估计要保不住 5%了 @_@
178 天前
回复了 ODESZA 创建的主题 上海 朋友收到病危通知书,撑不过本月,人各有命
“他让我们等他去世之后去起诉他,让他家里陪给我们一部分欠款”
可笑可笑
178 天前
回复了 kyoma 创建的主题 职场话题 我是在背刺朋友吗?
你表现得很好,先感动自己,再感动他人,玄德公也不过如此
为啥是微创手术,不是膝关节置换?
179 天前
回复了 baoshu 创建的主题 Linux 有没有适合开发者的 Linux 系统
开发者是开发者,你是你,你的需求和他们的需求一致么? 你有没有特别的要求? 你有没有特别挑剔?
@_@
185 天前
回复了 328174749 创建的主题 游戏 黑神话悟空,各位买不买!买了玩不玩?
急什么,你 steam libary 里面的游戏都玩光了?

等打折,国货/新品不冲首发
191 天前
回复了 hello267015 创建的主题 生活 被业委会气到了
如果公共车位的收费是针对特定业主的,那不太合理
我运动太少,消耗不够,不配享受这种餐食。。。 ~_~
214 天前
回复了 kisshere 创建的主题 旅行 如果要睁眼看世界,去哪个国家比较好?
看就看美国
214 天前
回复了 buyerhou 创建的主题 分享发现 再来一贴,车位交易因 100 元黄了!
原因是你不需要他的车位,他不需要你的钱
216 天前
回复了 zs3128589 创建的主题 汽车 最近种草了理想,来些帮我拔草的老哥们
自从出了理想,才知道有这么多会开车的人也开过船的。。。
218 天前
回复了 KepaThings 创建的主题 Apple 怎么 vision pro 没啥讨论度了
所以现在要体验 vr ar ,还是 quest3 最合适?
228 天前
回复了 sinORcos 创建的主题 NAS 集群式存储 NAS 的一种可能性?求大佬解惑
硬盘也是有寿命的,不如另外搭一套,方案也简单不折腾
234 天前
回复了 dexlee2020 创建的主题 问与答 小孩考不上高中,还有什么出路?
“那次寄了 100 多把伞”
你们自己办事也不咋地啊,就这样的还管得了他?
234 天前
回复了 UIXX 创建的主题 问与答 2024 年中买什么平板好
等等看新的 arm windows 平板,不过估计价格便宜不了
234 天前
回复了 shortawn 创建的主题 职场话题 怎么面对工作中的“致郁系”同事?
我一般都不会点开这种治愈系帖子,这贴看了 3 行,留言,ctrl+w
239 天前
回复了 Persimmon08 创建的主题 OpenAI 这个问题,大家的 GPT 都能答对吗?
@Claude-3-Opus 请比较上面三种不同的解法


Claude-3-Opus:

上述三种解法虽然细节略有不同,但整体思路是一致的。它们都分别计算了 y = x ln(1+1/x) 在 x 趋近于 0 和正无穷时的极限。

对于 x 趋近于 0 的情况,三种解法都使用了变量替换 t = 1/x,将原问题转化为求 lim(t→∞) ln(1+t)/t 的极限。然后都运用了洛必达法则,对分子分母分别求导,得出极限为 0 。

对于 x 趋近于正无穷的情况,我的解法和 Gemini-1.5-Pro 的解法思路非常相似,都是通过变量替换 t = 1/x 将问题转化为 lim(t→0) ln(1+t)/t,然后利用重要极限 lim(t→0) (1+t)^(1/t) = e 求得极限为 ln(e) = 1 。

GPT-4 的解法在处理 x 趋近于正无穷时略有不同。它先将 ln(1+1/x) 进行泰勒展开,然后再求极限。这种方法虽然合理,但相比其他两种解法略显复杂。

总的来说,三种解法殊途同归,都正确地求出了所需的极限。我和 Gemini-1.5-Pro 的解法更简洁直观一些。但 GPT-4 给出了一种不同的思路,这对拓宽我们的思维方式也有帮助。
239 天前
回复了 Persimmon08 创建的主题 OpenAI 这个问题,大家的 GPT 都能答对吗?
Gemini-1.5-Pro

好的,我来独立解决这个问题。

分析:
我们需要分别计算 $y = x \ln(1+\frac{1}{x})$ 在 $x$ 趋近于 0 和正无穷时的极限。

当 x 趋近于 0 时:
变量替换: 令 $t = \frac{1}{x}$,则当 $x$ 趋近于 0 时,$t$ 趋近于正无穷。原式变为:
lim



0

ln

(
1
+
1

)
=
lim




ln

(
1
+

)

lim
x→0

xln(1+
x
1

)=lim
t→∞


t
ln(1+t)



洛必达法则: 由于 $\lim_{t \to \infty} \ln(1+t) = \infty$ 且 $\lim_{t \to \infty} t = \infty$,我们可以应用洛必达法则:
lim




ln

(
1
+

)

=
lim




1
1
+

1
=
lim




1
1
+

=
0
lim
t→∞


t
ln(1+t)

=lim
t→∞


1
1+t
1



=lim
t→∞


1+t
1

=0

因此,当 $x$ 趋近于 0 时,$y$ 的极限为 0 。

当 x 趋近于正无穷时:
变量替换: 令 $t = \frac{1}{x}$,则当 $x$ 趋近于正无穷时,$t$ 趋近于 0 。原式变为:
lim





ln

(
1
+
1

)
=
lim



0
ln

(
1
+

)

lim
x→∞

xln(1+
x
1

)=lim
t→0


t
ln(1+t)



重要极限: 我们知道 $\lim_{t \to 0} (1+t)^{\frac{1}{t}} = e$,因此:
lim



0
ln

(
1
+

)

=
ln

(
lim



0
(
1
+

)
1

)
=
ln

(

)
=
1
lim
t→0


t
ln(1+t)

=ln(lim
t→0

(1+t)
t
1


)=ln(e)=1

因此,当 $x$ 趋近于正无穷时,$y$ 的极限为 1 。

结论:
当 $x$ 趋近于 0 时,$y = x \ln(1+\frac{1}{x})$ 的极限为 0 。
当 $x$ 趋近于正无穷时,$y = x \ln(1+\frac{1}{x})$ 的极限为 1 。
1 ... 2  3  4  5  6  7  8  9  10  11 ... 119  
关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1169 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 44ms · UTC 18:24 · PVG 02:24 · LAX 10:24 · JFK 13:24
Developed with CodeLauncher
♥ Do have faith in what you're doing.