跟着这个 roadmap 走就行了
https://roadmap.sh/backend?r=backend-beginner ,最多加个消息队列 RabbitMQ 和搜索引擎 Elasticsearch ,非要去 java 屎里淘金干啥…首选 node 和 go ,选对已经成功一半了。
目标是“软件工程师”而不是“x 语言程序员”,先掌握更多的后端架构知识才是正确的道路。
很多时候做技术方案不是越多越好,一股脑做加法的都是菜得抠脚的人,你看 java 那些课程觉得人家内容多,我看过去还觉得是一开始方向错了只能引入更多的蹩脚方案来弥补,疯狂堆屎山。做减法才有技术含量。
我搜了下你那些充电桩、AI 、网约车课程,给你理一理里面内容:
充电桩:
SpringBoot3:正常的 web 框架,没啥特别的;
MQTT:RabbitMQ 加插件;
WebSocket:node 、go 更擅长,甚至 deno 和 bun 在标准库里都实现好了;
Netty:就是 JavaScript 在 async/await 之前的回调地狱的时代那套东西;
时序数据库:PostgreSQL 装个 TimescaleDB 插件搞定;
Protobuf:好坏参半的 RPC ,复杂度增加很多,真要用你还得考虑很多东西,不如纯 http 调用接口,最多加个 Dapr 在中间;
AI 课:
LangChain4j:一个库,你用 LlamaIndex.TS 就得了;
RAG:LlamaIndex 里就有,3 行代码的事
https://developers.llamaindex.ai/typescript/framework/modules/rag/chat_engine/ ,原理在
https://github.com/run-llama/llama_index/blob/81d4b871143ddd4a7cb90333a3d103fbb1f269c5/llama-index-core/llama_index/core/prompts/chat_prompts.py#L21 这 15 行代码,说白了就是拆分问题里可以搜的东西,搜出来相关内容再 rerank ,然后拼接成字符串贴在上下文里,又回到了 Elasticsearch 或者 PostgreSQL 的 pgvector ,其实难点在召回高质量内容,和 java 没啥关系;
记忆:
https://developers.llamaindex.ai/typescript/framework/modules/data/memory/#configuring-memory-for-an-agent 有效代码不到 20 行…还是字符串拼接;
tools + MCP:
https://developers.llamaindex.ai/typescript/framework/modules/agents/tool/#tool-function 有效代码加起来不到 50 行…
AI 课:和 java 有点关系但不多,算是一个 API Caller 加点项目设计吧,这也能水 13 小时课程,看得我也想去卖课了……
网约车课:
SpringCloud 微服务体系:有 k8s 之后没它什么事,也就 java 存量项目在用,真正要学的是 k8s 这套体系,结合你的代码正确的跑在 k8s 上面。
要是会打一个极简的 docker 镜像然后自己在云厂商的容器服务/serverless 里跑起来再配置一个网关入口你已经超越 98%的同行了。要是在云厂商通过界面操作点点点配置好弹性伸缩你已经超越 99%同行了。此时一部分 java 还在解决容器太大启动太慢和内存占用太高的问题,一部分 java 在看某屎山动态线程池方案想办法给自己的服务从 50 并发优化到 100 并发,而你在喷云厂商为啥我 1 核 512MB 内存的容器明明能抗三五千并发,你的共享型 API 网关并发额度才给到我 500 。
要是框架选了 honojs 然后部署到 cloudflare worker 你就已经超越 99.5%的同行了,你的应用现在已经打不死了,能打死你的是下游扛不住的各种组件和你的账单。
AI 写代码正确性最高的语言:
Go (语法简陋、特性少、概念少、标准库质量高,已经被 AI 学透了,从 30B 到 1000B 级别的 AI 写出来都差不多,反正遇事不决可以让 AI 当场搓一个库给你)
JavaScript/TypeScript(高质量代码库多,毕竟前端娱乐圈一言不合开个 NPM 仓库,9 行代码的 is-odd 都要搞一个包,还写一堆测试代码和 lint ,产能超强,喜欢追新,AI 容易学到新内容);
Python (高质量代码库多,但是异步生态垃垮所以高质量异步代码少,AI 写同步代码还行,写异步代码能力差)
你在 groq 里创建个免费 api key ,选个 gpt-oss-120b (速度接近 500token/s )或者 kimi-k2-instruct-0905(速度 220token/s),用来写这 3 个语言正确率都能有 95%甚至更高,你看都来不及,何苦去用 java 呢,限制你的只有你的后端体系知识,因为每个 AI 给的方案可能都不一样,你需要判断这“上中下策”里哪一个才是“上策”,所以按照最开始的 roadmap 打好基础才是正道。